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Abstract. Hydrophilicity index is used to locate antigenic determinants on two related
groups of proteins—myoglobin and hemoglobin. The data on 41 species (including 34
mammals) of myoglobin show that average hydrophilicity for the complete myoglobin
molecules as well as the average hydrophilicity for all hydrophilic regions put together
seem to remain constant; the variation in the size and location of the antigenic
determinants in these species is very small indicating that the antigenic sites are not shifted
during evolution. In the case of both the proteins there is a good agreement between the
antigenic sites picked up by using hydrophilicity index and the experimentally determined
antigenic sites. The data on 56 species of hemoglobin a-chains and 44 species of hemoglobin
fi-chains showed that although there are few sites on hemoglobin which have remained
invariant during evolution, there is a significant variation in other sites in terms of either a
splitting of a site, or a drastic change in the hydrophilicity values and/or a length of the
site. Comparison of the hydrophilicity data on these two groups of proteins suggests that
hemoglobins which perform a variety of functions as compared to myoglobins are evolving
faster than myoglobins supporting the contention of earlier workers.
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Introduction

Immunological properties of proteins have been used widely to study their
structure. However, determination of complete immunogenic structure of a single
protein from a given species is not very easy and some times takes a long time. In
fact, there are only a few proteins such as sperm whale myoglobin (Atassi, 1975),
hemoglobin (Kazim and Atassi, 1980, 1982) and lysozyme (Atassi, 1978) for which
complete immunogenic structure is available. The experimental studies on proteins,
particularly on lysozyme, have also pointed out that antigenic sites on proteins may
be formed either by sequential continuous regions or by bringing together several
antigenic determinants to form antigenic sites. The elaborate experimental
procedures used for these studies and the time spent on them have necessitated the
development of a theoretical approach for the prediction of immunogenic structure
of a protein. One of the approaches which seems to have high potential to delineate
antigenic determinants of the protein molecule is by Hopp and Woods (1981) and
by Fraga (1982). This approach was recently used to predict and confirm the
antigenic determinants of proteins such as RNAase A and seminalplasmin (Pandit,
1985). The success of this approach prompted us to apply the method to the
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proteins for which complete sequences are known for large number of species and
at least in one case where both the 3-dimensional structure as well as complete
immunogenic structure is known. The natural choice for our case study was
therefore myoglobin and hemoglobin. The purpose of choosing these proteins was
to examine the antigenic sites on functionally related groups of proteins and to see
if it is possible to throw some light on the differences between myoglobins and
hemoglobins as hemoglobin is involved in much more diversified functions than
myoglobin. These studies showed that indeed the level of confidence in the
prediction of antigenic sites can be increased substantially if, instead of applying the
approach of Hopp and Woods (1981) to a single protein, it is applied to a group of
related proteins of known sequences. The results obtained from the analysis of such
related protein sequences are discussed along with their significance in the
succeeding sections of this paper.

Materials and methods

Amino acid sequences of myoglobin from 41 species (34 mammals, 5 reptiles and 2
birds) were taken from protein sequence data bank of NBRF. The species for which
myoglobin sequences were analysed are given in figure 1. All the myoglobin
sequences were arranged to get maximum homology among their sequences as has
been done earlier by Hunt et al. (1978). The system of numbering the sequence after
alignment was the same as followed by Hunt et al. (1978). This sequence data was
further used to determine the hydrophilic regions on proteins. The algorithm which
is quite similar to the one used by Hopp and Woods (1981, 1983) and Pandit (1985)
to determine the hydrophilic regions is briefly discussed below. For each
overlapping hexapeptide a profile of hydrophilic values as a function of the position
in the sequence of the first amino acid of the hexapeptide is constructed using a
computer program. Hydrophilicity values used are those given by Levitt (1976) with
the adjustments suggested by Hopp and Woods (1981). Each hexapeptide was
addressed by the position of the first amino acid in a hexapeptide sequence.
Whenever the hydrophilicity values of at least 4 consecutive overlapping
hexapeptides as well as the average hydrophilicity of all the amino acids consisting
the region composed of such hexapeptides was greater than or equal to zero, such a
region was picked up as the most probable antigenic site. The search was continued
for delineating antigenic determinants for the entire sequence. This algorithm was
applied to the sequences of myoglobin and hemoglobin of the species mentioned in
figures 1 and 3 respectively, and antigenic determinants were determined.

Results and discussion

Probable antigenic sites along with their average hydrophilicity values for
myoglobin sequences for all the species are given in figure 1. It can be seen from
figure 1 that in case of myoglobin, 7 probable antigenic sites were obtained, These
sites along with the experimentally observed antigenic sites for human myoglobin as
reported by Atassi (1975) and Westhoff et al. (1984) are given in table 1. It can be
seen from figure 1 and table 1 that all experimentally observed sites are picked up
by our method except the site 166-172. The only theoretically predicted additional
antigenic determinant is 155-166. In all other cases, however, one finds a very good
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Figure 1. Hydrophilic sites on myoglobin from various species (the average hydrophilicity
values of individual sites are given along with the sites).

agreement between experimentally observed and theoretically predicted antigenic
sites. It can also be seen that many of the sites such as sites I to IV and VII are
present in all the species without exception and there is a very little variation in the
length of these sites. A close scrutiny of the hydrophilicity values indicates that the
values for sites IT and V are not very high when compared with the hydrophilicity
of the other sites. In fact, according to the rationale established by Hopp and
Woods (1981, 1983) a good correlation between hydrophilicity value and antigenic
site exists only for those two or three regions which have highest hydrophilicity
values. Tt means that sites IT and V in myoglobin species, being relatively weak in
their hydrophilic character, may not coincide with the antigenic sites if the choice is
based only on the hydrophilicity data. However, experimental data on human
myoglobin given in table 1 indicate that the sites II and V are antigenic. Therefore,
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Table 1. Comparison of sites obtained on myoglobin by using average
hydrophilicity values with the sites observed experimentally by earlier workers.

Experimentally observed sites

Site Site based on
No. hydrophilicity® Atassi (1975) Westhoff et al. (1984)
I 9- 17 —_— 9- 15
II 20— 32 24- 31 24- 31
I 42— 68 — 31— 68
69— 75 69— 74 69— 74
v 85-108 — 85-108
\' 109-119° 113-121 113-120
VI 1331474 134-141 134-140
142-153 — 142-148
vl 155-166 — —
VI — 166-172 166-172

“Sites are depicted by the range covered by various species given in figure 1.
bPicked up as single site but shown separately for comparison.

‘Except in case of alligator where the site was 105-119.

Note a small overlap between the subsites of the site VI.

this study points out that the antigenic sites with relatively low hydrophilicity
values (such as sites IT and V) can be picked up if one carries out analysis similar to
the one mentioned above on a similar protein from different species. It is interesting
to note from the myoglobin data that although the order of the sequence-homology
among proteins from various animals which are evolutionarily distant is less than
50%, the variation in the size and the location of antigenic determinants in these
species is very small indicating that the antigenic sites are not shifted during
evolution.

The quantitative variation in the average hydrophilicity values of different sites
on myoglobin for all species studied is given in figure 2. A closer look at these
values in few cases indicates that for a given species the change in the hydrophilicity
value of one of the antigenic sites is associated with a compensatory change in the
hydrophilicity value of the other site (ex. compare the hydrophilicity values of sites
IIT and VII for species No. 15). Although one cannot generalize in regard to such a
behaviour, this suggests that the delicate balance of the total hydrophilicity value
for antigenic sites is maintained from one species to another species. This is further
supported by the finding that the average hydrophilicity for complete myoglobin
molecules as well as the average hydrophilicity values for all hydrophilic regions
put together (see two lowermost profiles in figure 2) seem to remain constant. The
maintenance of the above mentioned delicate balance of hydrophilicity of the
protein molecule may be of a general nature and is probably necessary for an
intrinsic functional requirement of the protein.

Hydrophilicity data obtained for hemoglobin species are given in figures 3 and 4.
Kazim and Atassi (1980, 1982) have reported the antigenic sites on the a-chains of
hemoglobins and few other species (table 2) by using synthetic approach in their
confirmation of antigenic sites on these proteins. Comparison of the sites obtained
by them with the sites picked up by using hydrophilicity values is given in table 2.
It can be seen from the results that there is an appreciable amount of overlap
between the experimentally confirmed antigenic sites in the species mentioned and
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Figure 2. Average hydrophilicity values for different sites on the myoglobins from various
species.

the range indicated by the sites picked up by using hydrophilicity values. Although
sites 1 and IV picked up by the later approach are not found antigenic
experimentally, reasonably good correlation was found in case of other sites.
Several hemoglobins from various species included in the study are evolutionarily
distant and have very little sequence homology. However, it can be seen from
figures 3 and 4 that sites I, 11T and V in the case of a-chains of hemoglobins and
sites 1 and V in the case of B-chains of hemoglobins have changed very little during
the evolution. It is interesting to note that in the case of sites IT and IV of a-chains
of hemoglobins there is a significant variation in terms of either a splitting of a site,
or a drastic change in the hydrophilicity values, or even a complete absence of any
of these sites. In addition, site VI is missing in most of the a-chains of hemoglobins
with very few exceptions. In the case of p-chains of hemoglobins there is a
significant variation in sites 11, III and VI, and a complete absence of site 1I in most
of the birds and the reptiles analysed. These specific observations may have a
bearing on the evolution of these species. Comparison of hydrophilicity data of
hemoglobins with myoglobins from all the species shows that site VII present on
myoglobin is completely deleted in case of «- and f-chains of hemoglobins.

These observations open up many questions in relation to their significance and
suggest the need for more scrutiny of such data. It was thought that it would be
possible to meaningfully interpret .these results by comparing the data on
myoglobins, - and S-chains of hemoglobin from the same species. We could pick
up 17 species where the sequences for all the 3 proteins were available from the data
bank. These data are summarised in figure 5. In the case of myoglobin, there is a
tendency of hydrophilic sites to remain constant in terms of length as well as
hydrophilicity values except in case of site VI which sometimes splits into two with
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Figure 3. Hydrophilic sites on a-chains of hemoglobins from various species (the average
hydrophilicity values of individual sites are given along with the sites).
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Figure 4. Hydrophilic sites on f-chains of hemoglobin from various species (the average
hydrophilicity values of individual sites are given along with the sites).

an appreciable variation in hydrophilicity value. There was also a merging of sites
IV and V in the case of myoglobins from two species. In the case of a- and f-chains
of hemoglobins the invariance in length of sites and their hydrophilicity values is
maintained in only few sites (sites I and V). The variations, wherever they occurred,
are reflected in terms of either splitting or shifting of the hydrophilic site, or change
in the length of the site. In their studies on mammalian hemoglobins and
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Table 2. Comparison of the sites on a-hemoglobin obtained by using average hydrophilicity
values with those observed experimentally by earlier workers®®,

Experimentally observed sites

Site Site based on

No. hydrophilicity® Human® Rabbit® Mouse® Goat®
1 9- 17 — — — —
Ila,b,c 19- 42 20- 37 21- 36 21- 36 24- 32
1 57- 79 53- 84 70— 83 70— 83 62— 75
v 83— 94 — — — —
Va,b 105-127 106-122 107-121 107-121 107-121
Vla 137-142 128-142 126-134 126-134 129-141
VIb 149-153 138-162 149-161 149-161 146-154

“Sites are depicted by the range covered by various species shown in figure 3.
*Kazim and Atassi (1980).
‘Kazim and Atassi (1982).

myoglobins based on the nucleotide replacements, Barnabas et al. (1978) have
suggested that primate myoglobins evolve at a slower rate than primate
hemoglobins. Our observations are also suggestive of the fact that hemoglobins are
evolving faster than myoglobins. Tetrameric hemoglobin is known to carry out
variety of functions not observed with myoglobin. Relatively faster evolution of
hemoglobins may be the manifestation of the much diversified functional demands
placed on them.

Comparison of hydrophilicity values averaged over all the species for the 3
proteins are given in figure 6. This figure allows one to see the differences in the
hydrophilic character of various sites on different proteins irrespective of species
being studied. It can be seen from figure 6 that hydrophilic characteristics of sites 1
to IV on myoglobins are drastically different from the other proteins while they are
more or less same in case of sites V and VI. Site III on myoglobins has highest
hydrophilic character amongst all the sites, while site IT is appreciably weaker in this
respect. In keeping with the single crystal structures obtained by X-ray diffraction
method for deoxymyoglobin and hemoglobin (Dickerson and Geis, 1983), almost all
the residues which we have predicted as antigenic are found to be on the surface of
the molecules. It may be mentioned here that we have determined antigenic
determinants on «- and f-chains independently in their monomeric forms. However,
when hemoglobin molecule is formed, a few residues which are on the surface of the
individual a- and f-chains do not remain on the surface but fall in the interior of
the molecule. In the case of hemogiobins site I is more hydrophilic in a-chains as
compared with B-chains while reverse is the case with site II, thus explaining the
maintenance of delicate balance in hydrophilic character of the protein as
mentioned earlier. In general it can be said that in all species hydrophilic regions
show preference for the N-terminal half of the protein chain making these regions of
the chain more exposed to the environment. The data further suggest that in case of
hemoglobins the hydrophilic regions are much more flexible and have evolved due
to the strong interactions with the environment. It is known that hemoglobins have
evolved from myoglobins, leading to a- and f-forms most probably through the
mechanism of gene duplication.

The above observations indicate that in case of related proteins the changes in
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Rabbit 0477 o723 0220 0313 0.204
Commaon free shrew 998 oest o223 0294
Indian and African slephant 0094 0.373 o.ur? o242 0294 _ o3
Pig o0:080 o3¢ o:03¢ o208
Sheep/Goat o863 o338 0:222 0.800 o308 0:294 olse
Bovine osls 0-338 0:222 0430 022 s L o222
Opossum o2ze 0233 o248 322 @373
Kangoroo (Red/Gray) o483 o244 0287 _o-294 o203
Echidna 9323 0257 _0:408 Q450
Platypus 0353 0233 0330 S:260 9:408 Q420
Chicken o241 0,138 0,292 0294 o172
Atigator 730 o100 0448 o221 0:238 o184

Figure 5. Comparative data on hydrophilic sites
hemoglobins from various species.

on myoglobins, a- and f-chains of

the characteristics of antigenic sites are maintained at the minimal level and,
therefore, the hydrophilic sites on a group of related proteins could be used to tune
the data on the antigenic determinants obtained experimentally for a single protein.
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0.8 (A} Myoglobin
{(B) ot-Hemoglobin
2 (C) B-Hemoglobin
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23 :
s v
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O=x®8co asco
Site: I II

Figure 6. Hydrophilicity for various sites for 3 proteins averaged over all the species
analysed.

The results also support the view that hemoglobins which perform a variety of
functions are evolving faster than myoglobins.
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