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Summary
Using a scientific measurement without an estimate of its
error is like lending money to a stranger. Given the
explosion in nucleic acid and protein sequence and
structural data, what risks are the scientific and medical
communities running in using these databases. Is there
an `ombudsman' who speaks for the users of the data?
CODATA, the Committee on Data for Science and
Technology of the International Council of Scientific
Unions was established to improve the quality, reliability,
processing, management, and accessibility of data for
science and technology. The CODATA Task Group on
Biological Macromolecules has surveyed quality control
procedures of archival databanks in molecular biology.
Our role is `to advise, to be consulted, and to warn.' This
report describes the kinds and extents of errors that may
appear in nucleic acid and protein databases, and
presents an agenda for future work to improve the quality
of these databases. The results of the survey appear
on the web (http://www.codata.org/codata/tgreports/
tg_reps.html). BioEssays 22:1024±1034, 2000.
ß 2000 John Wiley & Sons, Inc.

Introduction

Databanks in molecular biology exist in profusion.(1) Some

are general and comprehensive; others are specialized or

``boutique'' collections. The main archival projects curate,

archive and distribute sequences and structures; these

include the output of genome sequencing projects and the

systematic whole-organism protein structure determinations,

known as ``structural genomics'' (Table 1).

The quality of archived data can, of course, be no better

than the data determined in the contributing laboratories.

Nevertheless, careful curation of the data can help to identify

errors. Disagreement between duplicate determinations is,

as always, a clear warning of an error in one or the other.

Similarly, results that disagree with established principles may

contain errors. It is useful, for instance, to flag deviations from

expected stereochemistry in protein structures, but such

``outliers'' are not necessarily wrong. Furthermore, different

kinds of data can act as checks on each other; e.g., the

identification of putative sequencing errors through compar-

ison of protein structures.(2)

The state of the experimental art is the most important

determinant of data quality. For instance, the acquisition of

older data was limited by the earlier techniques. Amino acid

sequences of proteins used to be determined by peptide

sequencing but now are translated from DNA or RNA

sequences. One effect of the data explosion, however, is that

most data are new data, governed by current technology.

Quality control procedures provide the second level of

protection. Indices of quality, even if they do not permit error

correction, can help scientists avoid basing conclusions on

questionable data. Yet, because the community clamours for

instant access, several databanks release entries in an

`immature' state, and only subsequently pass them through

checking procedures. In consequence, errors often enjoy a

longer existence than they would if caught immediately,

especially if they are disseminated to local copies at databases

in which subsequent corrections are not made. That errors

exist is incontrovertible. Readers with an appetite for horror

stories may consult Ref. 3 (see also Refs. 4±7).

DNA sequence data and annotation

Current DNA sequencing technology should reduce sequence

error rates to as low as one base in 10000.(5,8±12) In genome

projects each base is sequenced, on average, between 6 and

10 times, generally including at least one reading from each

strand. Inconsistencies are checked by experts, and if the

conclusion is still uncertain, by additional experiments. As a

typical protein in a prokaryote is encoded by a kilobase of DNA,

an error in gene sequencing of one isolated wrong base in

10000 corresponds very roughly to one amino acid error in

� 10±15 proteins for a prokaryotic genome. In the human

genome, in contrast, the most gene-dense regions contain

only about 1 gene per � 10000 bases, with the average

estimated at 1 gene per 30000 bases. The corresponding error
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rate in translated amino acid sequences would be (very

roughly) one amino acid substitution in 100 proteins. Larger-

scale errors in sequence assembly, however, can also occur,

especially in highly-repetitive regions. Missing a nucleotide

can cause a frameshift error affecting the computed transla-

tion, making nonsense of an amino acid sequence.

In the short term, more efficient chemical reactions and

better software should improve sequencing accuracy.(13±18)

Algorithms can detect errors in coding sequences,(19) and their

extension to non-coding sequences should be possible.

Combined with proper annotation, they should considerably

improve the assessment of sequence quality.

How do sequencing errors affect applications, such as

database searching? Most algorithms seek inexact matchings,

and cope with substitutions, deletions and insertions.(20±23) In

most cases involving comparisons of sequences from different

species, evolutionary divergence rather than error accounts

for the differences between the probe sequence and

the entries identified (Fig. 1). In database searches using

nucleic acid sequences simple deletions of one or two bases

do not present problems. The translation to amino acid

sequences of nucleotide sequences containing such errors,

however, will involve frameshifts that garble the sequence

disastrously and create very serious problems in database

searching.

Although the archival DNA databases (EMBL/GenBank/

DDBJ) carry out quality checks on every sequence sub-

mitted,(24) no general quality control algorithm is yet in

widespread use.(25) To safeguard the target error rate of <1

in 10000 for the human genome project, the National Institutes

of Health have carried out a cross-genome centre sequence

checking exercise in the U.S.A., to be followed by an

international exercise.

Annotation of nucleotide sequence data
Entries in nucleic acid sequence databanks contain, in

addition to the DNA or RNA sequence itself, annotations that

contain information about: the origin of the sequence; the

Table 1. Main archival data projects in molecular biology. Nucleic acid sequences are treated by a collaboration of

GenBank, the EMBL Data Library and the DNA Data Bank of Japan. A second triple partnership deals with amino

acid sequences of proteins: The Protein Information Resource, the Munich Information Centre for Protein

Sequences, and the International Protein Information Database in Japan. SWISS-PROT, a collaboration between

the University of Geneva and the European Bioinformatics Institute, treats amino acid sequences of proteins. The

Protein Data Bank, Nucleic Acid Database and the BioMagRes Data Bank collect three-dimensional structural data.

A related organization, the Cambridge (U.K.) Crystallographic Data centre archives structures of small molecules.

Name of Databank and home URL Type of data Location

GenBank Nucleic acid sequences National Library of Medicine, Washington, DC, USA

www.ncbi.nlm.nih.gov/

EMBL Data Library Nucleic acid sequences European Bioinformatics Institute, Hinxton, UK

www.ebi.ac.uk/ebi_docs/embl_db/ebi/topembl.html

DNA Data Bank of Japan Nucleic acid sequences National Institute of Genetics, Mishima, Japan

www.ddbj.nig.ac.jp/

Protein Identification Resource Amino acid sequences Georgetown University, Washington D.C.

www.nbrf.georgetown.edu/pir/

Munich Information Center for Protein Sequences (MIPS) Amino acid sequences Max-Planck-Institute fuÈr Biochemie, Martinsried, Germany

speedy.mips.biochem.mpg.de/

International Protein Information Database in Japan (JIPID) Amino acid sequences Science University of Tokyo, Noda, Japan

Swiss-Prot Amino acid sequences Geneva, Switzerland and Hinxton, UK

www.expasy.ch/sprot/

Protein Data Bank Protein and nucleic acid Research Collaboratory for Structural Bioinformatics, USA

www.rcsb.org structures

Nucleic Acid Database Nucleic acid structures Rutgers University, New Jersey, USA

ndbserver.rutgers.edu/

BioMagResBank NMR structure determination Madison, Wisconsin, USA

www.bmrb.wisc.edu/

CarbBank Primary structures of Complex Carbohydrate Research Center, University of

www.ccrc.uga.edu carbohydrates Georgia, USA
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investigators; links to other databanks; and the `feature table,'

a list of segments of the sequence known or thought to have

biological significanceÐfor instance, regions that code for

proteins. Some annotations are hypothetical because many

descriptive features are inferences derived from the se-

quences. For instance, identification of a gene coding for a

protein in a stretch of genomic DNA from the distribution of

bases and absence of stop codons is a deduction, not an

observation. Such inferences have error rates of their own.

The hypothetical nature of many annotations is a new

development. Until recently, the typical DNA sequence entry

consisted of a gene, often with surrounding sequences,

produced by a research group investigating that gene and

its products. Annotation of features was grounded in experi-

mental data. In contrast, in full-genome projects, there is in

most cases little or no experimental work confirming the

expression and characterizing the products of genes. Com-

puter programs produce annotation, which have been

selected/edited by skilled curators before release of the

data.

In general, annotation of bacterial genomes is more

complete and accurate than that of eukaryotes.(26) Bacterial

genes are easy to identify because the spaces between them

are small and they are free of introns. The types of errors that

tend to appear are entries with frameshift sequencing errors,

which lead to truncation of predicted reading frames or even

double errors leading to a mistranslated internal fragment.

Small genes, indeed any small functionally important se-

quences, are likely to be missed, as they may fall below

statistically significant limits. In higher organisms, identifying

genes is harder and, in consequence, database annotation is

more dubious. Experimental studies can improve the annota-

tion of genomic regions but it is impossible to guarantee the

identification of all features of interest. Alternative splicing

patterns present a particular difficulty.

The full sequence of the nematode worm, C. elegans, is

typical of the complex genomes determined. Annotation of its

genes is much harder than was that of the previous most

complex genome sequenced, yeast. The C. elegans genome

has the advantage of consistency, however, as it was

sequenced entirely by two labs which collaborated exten-

sively. In contrast, the sequence of the human genome is

being determined in many labs and its annotation varies from

nothing, for certain regions, to gene predictions that are based

on different methods and that reflect different thresholds of

accepted significance.

Figure 1. The results of a PSI-Blast(51) search

for sequences related to that of Philippine sea

snake neurotoxin. This shows a typical sequence
alignment using a robust algorithm that can pick

out corresponding patterns even between se-

quences with many differences. In this case, the

differences are extremely likely to have arisen
from evolutionary divergence rather than from

experimental errors in sequence determination.
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Because the raw data on which gene predictions and other

annotations are based is increasing very steeply, consistency

checks will become more comprehensive and statistical tests

more powerful. Therefore the annotation of DNA sequences

must be frequently updated and not frozen. It is a challenge for

databanks to find ways to link primary sequence data to new

and updated annotations.

Prospects
The rate of acquisition of DNA sequence data has been

increasing exponentially for years, and new technology and

new genome projects will ensure that this increase continues

well into the future. Multiple capillary sequencing instruments

have recently been commercialized that promise to produce

500,000 bases of raw DNA sequence per day per instrument.

Hundreds of such instruments will be in place within a year.

(This sequencing capacity could process the equivalent of one

human genome per month.) Array scanning mass spectro-

meters will, even initially, have a similar capacity.

Both of these approaches appear to be scalable to even

higher sequencing rates. This will almost certainly mean that

upstream (sample preparation) and downstream (data anno-

tation and assembly into finished sequence) processes will

become rate limiting, rather than the production of sequence

data themselves. A rapid explosion of production of sequence-

related data such as expression patterns and polymorphisms

is also expected to occur. Centralized annotation will be

impossible, and some sort of controllable annotation process

will need to be developed and diffused across the entire

biological community.

Gel-electrophoresis-based DNA sequencing has error

rates of 1% or more in the raw data. Improving the accuracy

of the finished product by collation of multiple determinations

complicates the data handling. As sequencing processing

tools mature to include confidence estimates, these can be

factored into algorithms that use the DNA sequences. In

contrast, mass spectrometric sequence data are likely to be

almost error free, given the absence of electrophoresis-

specific artifacts like compressions and because of the

enormous redundancy inherent in the data themselves, in

particular the fact that the mass of a peak usually reveals

the base composition of the fragment. Nucleic acid mass

spectral data are typically accurate to fractions of a Dalton (Fig.

2).(27) This is quite a change from the data that molecular

biologists usually confront!

Three-dimensional analysis

X-ray crystal structure analysis
The experimental data in an X-ray crystal structure determina-

tion are the structure factor magnitudes, the absolute values of

the Fourier coefficients of the electron density. The results are

estimates of the positions and effective `sizes' of the atoms.

Contributions to the effective size of an atom include its

vibrational amplitude and, more seriously for protein struc-

tures, the disorder in the region of the molecule that contains it.

The reported parameter called the `B-factor' of each atom

describes its effective size, and for proteins it should be treated

as an empirical value. Because every atom contributes to

every observation, it is difficult to estimate errors in individual

atomic positions.

The resolution of the data limits the potential quality of the

structure. Resolution measures the ratio of the number of

observations to the number of parameters to be determined. In

the structure determination of small organic molecules or of

minerals, this ratio is usually generous: � 10. But for a typical

protein crystal, the following relationships hold:

Low resolution . . . High

Resolution in AÊ 4.0 3.5 3.0 2.5 2.0 1.5

Ratio of observations to 0.3 0.4 0.6 1.1 2.2 3.8

parameters

(The median resolution of structures in the Protein Data Bank

is about 2.0 AÊ .)

In practice, many models often fit the data almost equally

well and crystal structure determinations of proteins usually

require the imposition of stereochemical restraints such as

standard bond lengths and angles. Furthermore, crystal

structure determinations are at the mercy of degrees of order

in different parts of the molecule. (Order is the extent to which

different unit cells of the crystal are exact copies of one

another.) An extreme case is immunoglobulin KOL, with data

collected to very high resolution (1.9 AÊ ) in which the variable

domains were well determined but where the constant

domains were completely disordered and invisible in the

electron density map.(28) More typically, the core of a protein

structure is well ordered but surface loops may be more mobile

and less well determined.

The R-factor measures how well the model fits the data. If

the set of observed X-ray intensities is Fo, and the corres-

ponding predicted intensities calculated from the model are

Fc, the R-factor is defined as �jFo± Fcj=�jFoj. (The set of F's

may contain a list of tens of thousands of numbers.) For high-

resolution models values around 0.18±0.22 are good. For low-

resolution studies, however, `good' R-factor values may be

obtained even for models that are largely or entirely

wrong.(4,29,30) A more sophisticated quality measure is the

cross-validation R factor, R(free)
(31) The definition of R(free) is

the same as that of R except that the sum is taken over only a

small subset (typically � 5±10%) of the data, which have been

withheld during the structure determination.

R(free) measures how well the model predicts data withheld

during estimation of the parameters of the model. In an ideal

world R and R(free) would be equal. In practice, when values of

R(free) more than 0.1 greater than R are obtained, the result can
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indicate significant problems with the structure. Other indica-

tors of data quality are the resolution (the higher the better), the

overall completeness of the data, the completeness of the

highest resolution shell of data, and the average signal-to-

noise ratio of the high-resolution data.

The final model in a structure determination is adjusted by a

refinement procedure, and statistical analysis of the sensitivity

to parameter variations of the fit of model to the experimental

data can provide estimates of errors. Methods of error

estimation, well-established for small molecules, have been

extended to macromolecules.(32±33) Murshudov and Dod-

son(32), for example, estimate overall uncertainties of atomic

positions in macromolecules from the R(free) values, giving in a

typical case values of about � 0.05 AÊ at 1.5 AÊ resolution and

� 0.15 AÊ at � 2 AÊ resolution. In addition, they approximate

uncertainties of individual atomic positions from B-factors,

giving values of about 0.16 AÊ for an atom with B� 20 AÊ ,(2) and

0.3 AÊ for an atom with B� 60 AÊ .(2)

Figure 2. Sequencing Exon 7 of the human p53 tumor suppression gene by Matrix-assisted laser desorption and ionisation-Time of

flight (MALDI-TOF) mass spectrometry. (Kindly provided by Kai Tang, Sequenom, Inc.) This technique promises greatly increased

through-put rates and accuracy over current sequencing techniques. Mass spectrometry measures the masses (on the abscissa) of ions

generated from mixtures of oligonucleotides produced by extensions of a primer terminated by each of four dideoxynucleotide
triphosphates. Comparison of spectra of the four mixtures terminated by A, C, T or G (or their analogs)Ðwhich correspond to the four

``lanes'' of a gelÐreveals the order of the bases in the sequence. The advantages of mass spectrometry over gel electrophoresis are: (1)

accuracy (masses are measured to 0.05% or better), (2) speed, and (3) the small amount of material required (each peak corresponds to

� 50 fmol of material loaded).
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Errors in crystal structures reflect both errors in data and

errors in solving the structure. Ohlendorf(34) compared four

independently-refined structures of interleukin-1b determined

at 2 AÊ resolution, finding a root-mean-square (r.m.s.) differ-

ence of 0.84 AÊ (a value much higher than the estimate obtained

using the often-quoted method of Luzzati;(35) cf. remarks by

Cruickshank Ref. 36). Fortunately, crystallographers are

increasingly depositing their primary data, the structure

factors, along with their structures. This permits detailed

checks on the structures.(37)

In practical cases, scientists want a clear impression

of the quality of a particular region of interest in a protein,

such as an active site. They should examine the fit of the

model to the data, by displaying the electron density map

with the molecular model superposed on it.(38) The most

useful maps for identifying problem areas in a structure

are `difference maps,' which have positive values where

correct features are missing, and negative values

where features of the model are not supported by the data

(Fig. 3).

Flying blind: Assessment of quality of a set of
protein coordinates without the experimental
data from which it was derived
When experimental structure factors are available, assess-

ment of a structure is a matter of checking the consistency of

the results with the measurements. In many cases the

structure factors are not available, however. How can one

Figure 3. A difference map showing electron density and structural model superposed. Top: During the process of structure

determination; bottom: corrected model. This figure illustrates the use of (F)(0)-(F)(c) difference electron density maps. Shown are two

residues (with yellow carbon atoms, blue nitrogen atoms, and red oxygen atoms), withÐtop illustration±the peptide link built incorrectly.

The red contours show difference density at a negative level (i.e., a red peak means that there are atoms in the model which should not
be there), whereas the blue contours show this density at a positive level (i.e., a blue peak means that there should be atoms there, but

they are not in the model yet). In this case, the solution±shown in bottom illustration is to `flip' the peptide plane, so that the carbonyl

oxygen leaves the red density, and points into the blue density instead (model with green carbon atoms). The upper residue was also in

an unfavourable region of the Ramachandran plot, but after ``flipping'' the peptide it ends up in a favourable area.
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then check the structure? The B-factors are important clues;

high B-factors, especially concentrated in a region, suggest

that the region has not been well-determined. This usually

reflects imperfect order in the crystal.

The other approach to structure validation in the absence of

experimental data begins by flagging stereochemical ``out-

liers''Ðexceptions to regularities common to well-determined

protein structures. The difficulty is not in the detection of

outliers but in deciding whether they are genuine features of

the structure, or the result of errors in building an atomic model

into the electron-density map, or the inevitable result of crystal

disorder. Almost every macromolecule contains a few

residues that will be flagged as outliers by validation software

even though they may not be errors.

Several computer programs exist for finding outliers in

structures: O, Procheck, Whatif, Errat, Verify3D.(39±41) Of

course, the authors of these programs face the psychological/

political problem of resentment that they are setting them-

selves up as ``structure police.'' Scientists, like other people,

do not welcome criticism, especially by individuals who did not

contribute to the results and did not face the problems that

arose during the work. Furthermore, given the expectation that

the kudos for a good result should reflect the skill and effort that

went into producing it, protein crystallography is a special field

(as for analogous reasons is palaeontology), because crystal-

lographers are at the mercy of their crystals (as palaeontol-

ogists are at the mercy of their fossil finds). Imagine a

crystallographer investigating two proteins. One protein

crystallizes in a well-ordered crystal, and data is collected to

high resolution. The solution of the structure is virtually

instantaneous and the result `correct'; i.e. virtually free of

outliers. The other protein forms poorly ordered crystals that

diffract only to low resolution. There may be immense

problems in interpreting the map, and the crystallographer,

given a commitment to an interesting project, may sweat blood

for years trying to extract the best possible results from the

data. Yet even the best results achievable in such a case can

only be of limited quality because of the resolution of the map.

Of course, the structure police swoop down on the second

structure.

Methods to detect outliers include:

* Type I: nomenclature and convention-related checks:

Examples include incorrect chirality, and the naming of

chemically equivalent side-chain atoms (e.g., in phenyla-

lanine and tyrosine rings). Such errors can be corrected

confidently without reference to experimental data and

current submissions can be fixed at the time of deposi-

tion.(42) Checking of old datasets is in progress.(42)

* Type II: `self-consistency tests:' Many stereochemical

features of macromolecular models are restrained during

refinement. Bond lengths and angles are restrained to ideal

values, planarity is imposed on aromatic rings and carbo-

xylate groups, non-bonded atoms are prevented from

clashing, temperature factors of atoms bonded to each

other are forced to be similar, etc. Methods that assess how

well these restraints are satisfied are an important part of

the arsenal of structure verification tools. Nevertheless,

their inadequacy in detecting genuine shortcomings in

models has been demonstrated.(30)

Proper assessment of outliers (as features or errors)

requires access to the experimental data. Sometimes,

outliers warn of more serious problems and may require

careful inspection of the electron-density maps and even

model rebuilding by an experienced crystallographer.

Unfortunately, not all errors can be fixed, even by appeal

to structure factors and maps; some regions are fatally

disordered.

* Type III: `orthogonal' tests: Most revealing and useful are

verification methods independent of the restraints used

during model refinement. Such methods use database-

derived information to assess how usual or unusual an

atom, residue, or entire molecule is. Examples include the

analysis of torsion angles of the protein main-chain

(Ramachandran analysis) and side-chain atoms (rotamer

analysis), the orientation of the peptide plane (peptide-flip

analysis), atomic volumes, geometry of the Ca-backbone,

nonbonded contacts, and the use of sequence-structure

profiles.(43)

For the non-expert user of macromolecular crystal struc-

tures, coordinate-based validation tools can help in forming a

rough judgement regarding the quality of a model. In general,

globally poor models (often determined at low-resolution) will

give rise to very many outliers, particularly in the Type III tests.

A similar heuristic is valid for locally poor models: unreliable

parts of a model will be characterised by a concentration of

`unusual' residues, even though the global statistics may be

acceptable. The simplest and most powerful test to carry out is

inspection of the Ramachandran plot(44) (Fig. 4).

We emphasise that proper assessment of outliers requires

access to the experimental data; and fixing of real errors will

usually require the attention of an experienced crystallogra-

pher. The conclusion seems inescapable that structure factors

should be archived and available, and we can think of no

reason why a crystallographer who is willing to release the

coordinates of a structure should hesitate to deposit the

experimental data on which they were based.

Quality of NMR structure determination
NMR is the second major technique for determining macro-

molecular structure. The experiments determine approximate

values of a set of interatomic distances and conformational

angles. These distances, derived from the Nuclear Over-

hauser Effect (NOE), identify pairs of atoms close together

in space, including those from residues distant in the sequ-
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ence which are essential for assembling the overall folding

pattern. Calculations then produce sets of structures that are

consistentÐas far as possibleÐwith the experimental con-

straints on distances and angles, and that have proper

stereochemistry.(45)

In practice, whereas crystallographers report unique (or

only a small number of) structures, NMR spectroscopists

usually produce a family of � 10±20 related structures (or

even more) each calculated from a random starting point but all

using the same set of experimentally-derived constraints

(Figure 5). Comparison across such an ensemble is used to

assess precision; regions in which the local variation in

structure is small across the ensemble are considered well

defined by the data. This may be viewed as the equivalent of

the crystallographer's B-factor. For highly variable regions, the

question arises whether this reflects genuine dynamic disorder

or merely a lack of NMR data to fix this portion of the structure.

This question can only be addressed by supplying additional

information, for instance by measuring NMR relaxation

properties as a function of sequence in order to detect,

experimentally, regions with significant internal mobility.(46)

For many NMR structures, however, this information is

unavailable.

In principle, the quality of fit between a calculated structure

and the experimental data can be expressed using the NMR

equivalent of the crystallographer's R-factor but this requires

being able to predict NOEs from atomic coordinates. This is

often difficult to do, in part because NOE intensities are

strongly affected by internal motions. Hence, `NMR R-factors'

are not widely used for protein structures at present (but are

more common for oligonucleotide structures). In practice,

quality of fit to the experimental data is reported in terms of the

maximum or average values for constraint violations. Con-

formity with stereochemical expectations is assessed as for X-

ray structures, using measures such as average deviations

from geometric ideality, proportion of residues occupying

Figure 4. The Ramachandran plot as an indicator of structure quality. All natural amino acid types except glycine have a substituent at

the a-carbon, which puts restrictions on the combinations of values that the main-chain f and c torsion angles can assume.(58) A

Ramachandran plot is a scatter plot of f and c for all amino acid residues in a protein. Allowed or favourable regions are usually shown,
as well. A good Ramachandran plot is characterised by having many residues tightly clustered in the favourable regions and few

residues outside these regions. Since the f and c torsion angles are usually not restrained during structure refinement, the

Ramachandran plot is a conceptually simple, yet very powerful diagnostic to assess the quality of a protein model. (a) This figure shows

an example of a poor Ramachandran plot. Glycine residues are shown as squares, other residues in favourable regions are shown as
plus signs, and residues outside the favourable regions are shown as asterisks.(44) Note that the plus signs are not tightly clustered, and

that there are many asterisks. Both indicate that the protein model is problematic. (In fact, it is a protein model that was intentionally

traced backwards, in order to demonstrate that many quality indicators that were traditionally used by protein crystallographers can in
actual fact not even discriminate between an essentially correct and a completely wrong model (30, see also. Refs. 54,55) (b) Example

of a good Ramachandran plot. Note that, in contrast with (a), non-glycine residues are tightly clustered in favourable regions, and that

there are few outliers (asterisks). One of the two outliers (bottom left) is close to a favourable region, but the other is not. In order to

assess whether the latter is an error in the model, or whether it is a genuine feature of the protein, requires inspection of the electron-
density maps, and, hence, access to the experimental data.
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favoured regions of the Ramachandran plot, and calculated

values of conformational energy.(47) Of course, in the

calculations, the trade-off between constraint violation and

geometric non-ideality can be adjusted by the user of the

programs.

A key consideration is how effectively NMR data constrain

a proposed structure. A common measure is the average

number of constraints per residue. Constraints, however, differ

in the extent to which they restrict conformation spaceÐ

indeed, some are completely ineffective. Therefore the

correlation of ``constraints per residue'' with structural quality

is imperfect. By far the most important consideration is that

constraints should all be correct, which in turn depends

absolutely upon correct assignment of the spectrum, that is,

the correct association of individual NMR signals with the

corresponding atoms in the structure. It is this step of spectral

assignment that probably represents the greatest difference

between NMR and crystallographic structure determinations,

and which affords the greatest opportunity for disasters.

Fortunately, however, these are rare.

A decision that strongly affects apparent quality of NMR

structure determinations is the choice of how many structures

to report. If structural statistics are calculated using only the

best few from a large number of calculated structures, the

outcome will appear more attractive than if a larger ensemble

is used. There is no consensus on how many structures to

report, partly because calculation protocols differ widely in

their convergence rates. Some control over this aspect of

reporting is desirable. One possibility would be to show

energy-ordered profiles of ensemble properties as a function

of ensemble size, since this reveals how representative the

actual choice of ensemble is.(48)

Yet, none of these measures really relates to accuracy, i.e.

the similarity of the calculated structure to the ``true'' structure.

One can determine, however, whether a calculated structure is

consistent with experimental data not used to constrain it. One

such approach is cross-validation. A proportion of constraints

is omitted from the structure calculation, and the consistency

of the resulting structure with the unused constraints is taken

as a measure of accuracy. (This is analogous to the pro-

cedures used by crystallographers in measuring R(free).) In

NMR, however, constraints are sparse, so one cannot afford to

leave out a sizeable proportion. Non-NOE data that have been

suggested for assessing structural quality include chemical

shifts, coupling constants and, most recently, residual dipolar

couplings measured in weakly ordered media.(49) In each

case, values can be predicted for a given model and compared

to experimental values. There is, however, always a choice

between holding back some data for use in validation and

using all the data to calculate a more constrained structure. To

date, the trend has been towards the latter.

Conclusions

Two factors dominate current developments in bioinformatics:

(1) The amount of raw data is increasing in quantity,

spectacularly so, and in quality. Methods for annotation are

improving but by no means at a comparable rate. Tools for

identification of errors are improving both through enhanced

understanding of what to expect and from a better statistical

base from which to flag outliers. (2) A proliferation of web sites

provides different views or slices or means of access to these

data; and an increasingly dense reticulation of these sites

provides links among databanks and information-retrieval

engines. These links provide useful avenues to applications,

Figure 5. Comparison of crystal and NMR structure determination of a small protein domain: the SH3 domain from a-spectrin. The

crystal structure is in red. Four structures from the reported NMR ensemble of 15 models are black, blue, green, and magenta. They
were selected to span the range of differences between NMR and crystal structures. The structures all agree well in the central core.

There are small deviations in some of the peripheral loops. The agreement between crystal and NMR structures is relatively good, but

not unusually so.
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unfortunately they also provide routes for propagation of errors

in raw or immature data. Such errors in data or annotation are

often subsequently corrected in the databanks but the

corrections not passed on.

These observations have several implications:

Annotation is a weak component of the enterprise.

Automation of annotation is possible only to a limited extent

and getting annotation right remains labor-intensive. But the

importance of proper annotation, however, cannot be under-

estimated. P. Bork has commented that for people interested

in analysing the protein sequences implicit in genome

sequence information, errors in gene assignment vitiate the

high quality of the sequence data.

The only possible solution is a distributed and dynamic

error-correction and annotation process. The workload must

be distributed because databank staff have neither the time

nor the expertise for the job; specialists will have to act as

curators. The process must be dynamic, in that progress in

automation of annotation and error identification/correction will

permit reannotation of databanks. As a result, we will have to

give up the ``safe'' idea of a stable databank composed of

entries that are correct when they are first distributed in mature

form and stay fixed thereafter. Databanks will become a

seething broth of information both growing in size, and

maturingÐwe must hopeÐin quality.

This will create problems, however, in organizing applica-

tions. Many institutions maintain local copies of databanks: At

present, ``maintain'' means ``top up;'' yet this will no longer be

sufficient. In the face of dynamically changing databanks, how

can we avoid proliferation of various copies in various states?

How will it be possible to reproduce a scientific investigation

based on a database search? One possible solution is to

maintain adequate history records in each databank itself in

order to be able to reconstruct its form at any time. This is

analogous to the information in the Oxford English Dictionary,

which permits reconstruction of a English dictionary appro-

priate for 1616 or 1756.

To recover from the dispersion of outdated and/or

erroneous information and links, perhaps ``knowbots'' will

come to our rescue.(50) Knowbots are mobile software agents

(``daemons'') designed to cruise the internet. They could

perform a continuous checking of the information resources for

molecular biology.

It is also clear that the entire molecular biological commu-

nity must become involved in the data archiving process.

Experts will have to curate the collections and software

engineers will have to organize the updating and access or

distribution.

The community as a whole will have to play an active role in

making intelligent decisions about what to archive. For

example, at present the deposition of structure factors

associated with atomic coordinates determined by X-ray

crystallography is not mandatory. Deposition of structure

factors would help resolve some of the problems in distin-

guishing real outliers from errors in structures. As the software

for crystal-structure determination improves, it will be possible,

at least in some cases, to redetermine the structure from the

experimental data to produce more accurate results. In

addition, new challenges are on the horizon. Planning for data

archiving in the emergent proteome projectÐa dynamic

analysis of spatiotemporal expression and activity of proteins

in an organismÐis one such challenge.

In the end, we will get the resources that we deserve. The

question is whether we are willing to make the requisite effort to

ensure the adequacy of their standards of quality.
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