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Conformational properties of pairs of amino acids
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Crystal structure data of 31 different globular proteins were analysed. Potentials
for all 400 pairs of 20 amino acid residues in helix, extended structure, chain
reversals and coil state were obtained. Analysis of these potentials showed that
tripeptides of amino acid residues are not linear combinations of amino acids.
The association effect of these tripeptides depends on the types of amino acids
associated, the position of amino acids in the pair and the secondary structure in
which the pair exists. This built-in information in tripeptides should be used in

polypeptide and protein folding studies.
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Conformational properties of single amino acid
residues have been deduced using crystal
structure data of globular proteins (1—3). Most
of these studies were done to calculate the
potential values of single amino acids in three
secondary structures, namely, helix, extended
structure and chain reversals. Such single
residue potential values are used in a large
number of algorithms to predict secondary
structures (3—10). These studies have pointed
out that the results obtained using single residue
potentials vary from method to method. This
is mainly because the weights given to various
amino acids vary considerably with respect to
their position in secondary structure. However,
as pointed out by Bourgeios et al. (11) from
their study on lzc repressor protein, none of
these methods can be considered to be good in
isolation. Even recent modification of these
methods by including hydrophobic interaction
term (6,12) does not improve the situation
appreciably.

In order to understand the limitations of the
methods, we have analysed the crystal structure
data of 38 different globular proteins and
determined main chain conformations which
are significantly affected by side chains (13).
This has prompted us to study more carefully
the side chain-side chain interactions, the
importance of which is never in doubt in poly-
peptide chain conformations (14—17). As a
first step the occurrence of pairs of amino
acid residues in four secondary structural
states, helix, extended structure, chain reversals
and coil has been studied. As observed earlier
in case of chain reversals (18) the pairs of
amino acids have different conformational
properties as compared to constituent amino
acid residues. Under Results and Discussion
we have shown that pairs of amino acids
cannot be treated as linear combinations of
single amino acids and the non-inear term is
too large to be neglected. It should be men-
tioned here that there is less data compared
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with data on single amino acid residues, when
one is working and deriving statistical infor-
mation at the level of pairs of amino acids,
as 400 different pairs have to be considered as
against 20 types of residues. Therefore our
discussion is restricted to qualitative aspects
of the results and less importance is attached
to absolute numbers. Further, only those pairs
of amino acids which occur a sufficiently large
number of times have been used for drawing
conclusions.

METHOD

The following 31 globular proteins for which
the crystal structures are available were used
inour studies: Lamprey cyanamet haemoglobin,
bovine ferricytochrome bg, human haemo-
globin (a and B-chains), chicken lysozyme,
subtilisin BPN', bacterial rubredoxin, Jack bean
concanavalin A, bacterial thermolysin, bovine
chymotrypsinogen A, bacterial high potential
protein, Dog-fish apo-lactate dehydrogenase,
carp calcium binding protein, carboxypeptidase
A complex, bovine ribonuclease S complex,
bacterial nuclease complex, sperm whale
myoglobin, bacterial ferricytochrome C,,
lobster glyceraldehyde-3-P-dehydrogenase, bac-
terial ferredoxin, horse alcohol dehydrogenase
complex, chicken triose phosphate, Bonito
ferrocytochrome C, bacterial cytochrome C s,
bovine trypsin-trypsin inhibitor, porcine tosyl
elastase, papain, bacterial semiquinone flavo-
doxin, human Bence-Jones protein REI mon-
omer I, human immunoglobulin G Fab New,
human carbonic anhydrase C, human pre-
albumin monomer II.

As can be seen these proteins belong to all
four structural classes: a-proteins, §-proteins,
o+ proteins and «/f proteins, We have
assumed a four-state model for the proteins
and thus all the sequences considered are
divided into helical, extended structure, chain
reversals and coil region. The helical and
extended structure regions were taken from
crystal structure data as reported in original
papers and compiled in AMSOM (19). The
chain reversal regions are computed using
the algorithm developed by us (18). In present
analysis, those chain reversals which are part of
either M-terminal or C-terminal of helix are
excluded in order to avoid double counting.
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Regions of protein sequences other than helix,
extended structure or chain reversals are con-
sidered as coil region.

In order to arrive at the potential for each of
the pairs formed by 20 amino acids in the
four different states mentioned above, we have
used the following procedure.

If ACDEF is a stretch representing a par-
ticular secondary structural region in protein
sequence under consideration, pairs AC, CD,
DE and EF were formed from them. The
number of times a pair formed by i and j®
type of residues occurs in k™ secondary struc-
tural state (Njj;) is computed for all pairs in
four states. Both i and j vary from 1 to 20 and
k from 1 to 4. Thus when i = j, the pair will be
formed by same amino acid. In all other cases
it will be formed by two different amino acids.

4
The total number of pairs (kZ} Njjx) occurring
=1

in 31 different globular proteins are given in
Table 1. Then Py;. the potential for a pair of
amino acids formed by i® and j® type of amino
acids in the k™ secondary structure was cal-
culated using following simple relation.

20 20
Sije = nijk/z Z Nijx

i=1j=1

a4
where rli]'k = Nijk/ Z Nijk
k=1

4
2 Sijx
_ k=1
Sij = a
Si:
Py = Sl]k (1)
ij

The values of Py obtained for each pair of
amino acid residues in each of the four states
considered are given in Table 2. We have also
determined potentials for single amino acid
residues in a way similar to that used for pairs
and they are given in Table 3.

RESULTS AND DISCUSSION

As can be seen from Table 1, 6028 pairs of
amino acid residues from 31 different proteins
distributed among 400 different types have



Number of occurrences of amino acid pairs in the 31 proreins

TABLE 1

Conformation of pairs of amino acids

A ¢ D E F G H I K L M N P Q R 5 T V v Y
A 70 8 35 17 16 44 19 20 41 41 6 18 23 21 11 44 26 48 9 18
Cc 14 1 5 2 0 18 3 6 13 14 1 8 4 9 7 9 4 17 1 4
D 40 6 18 19 15 36 3 2 21 24 3 15 16 4 7 31 17 27 6 13
E 22 5 14 18 16 24 5 9 25 30 6 13 10 13 10 15 15 23 S5 7
F 13 4 11 15 7 18 5 10 17 1§ 4 7 10 3 8 16 19 11 1 8
G 40 14 35 30 13 38 8 34 41 32 3 19 20 17 19 48 39 49 8 22
H 12 8 2 11 9 15 3 5 11 7 3 4 14 O 1 9 10 12 4 6
I 25 5 20 22 11 28 6 20 23 19 4 20 15 11 8 22 15 23 3 11
K 43 6 29 13 15 31 14 23 33 35 13 20 16 3 6 35 25 42 3 28
L 28 4 22 20 12 31 17 30 39 29 7 16 18 23 17 43 32 35 6 10
M 5 0 6 5 5 6 1 5 12 3 2 5 2 3 1 5 3 11 1 1
N 12 7 10 11 12 20 4 13 14 16 3 14 12 15 § 18 22 19 10 7
P 17 4 22 2 6 25 4 9 14 20 4 12 8 3 5 28 8 24 4 10
Q 24 3 14 8 6 20 8 9 15 12 2 11 9 11 § 15 10 10 4 9
R 7 3 4 6 5 15 3 10 10 20 3 8 6 13 3 20 7 16 2 5
S 46 16 20 22 15 351 9 19 28 37 9 20 14 20 14 50 39 39 14 127
T 32 9 22 19 21 31 10 14 26 28 5 12 23 14 6 30 23 32 8§ 14
V 54 19 40 22 16 35 18 22 30 42 4 19 14 15 14 42 33 45 6 11
w 8 2 4 4 1 16 2 8 8 4 1 4 2 2 5 7 8§ 11 1 3
Y 15 5 16 6 3 30 S 8§ 12 13 2 7 1§ 9 8 20 20 12 6 10

These pairs can be read by considering the residue first from vertical column and then from horizontal row.

Single letter amino acid code has been used.

been used to calculate Py;, values. The number
of occurrences for certain types of pairs is
considerably small and the values of potentials
for such pairs may not be true representatives
of the property of these pairs of amino acids as
the standard deviation associated with such
types of pairs is very large. Therefore, we have
obtained the mean value of occurrence of each
type of pair (N) using data given in Table 1.
Only those pairs which have Ny = N (N=15)
have been used in the following discussion. Pjj
values given in Table 2 indicate that there is a
large effect on the potential values depending
on whether the amino acid residue occurs in
first or second position in the pair. This can be
seen from the data in Table 2 if one carries out
the following simple analysis.
The values

= Pyt Piixc

: @

when i # j are computed. If

(P — 10%P) < (P and Pyy) < (P + 10%P)
(3)

then only Pjj. and Py;y were considered to be
same. When this analysis was carried out in

4 _
four states on pairs whose ¥ Nijj = N, only
k=1

one set of pairs Asp-Lys, Lys-Asp was found
to satisfy condition (3) in all four states,
indicating that the positional effect is minimal
for this exceptional case. The sets of pairs for
which Pj;, and Py values are different in all
four states are given in Table 4. We have also
examined the data by increasing the range
of inequality in condition (3) to 20% of P.
The results are not qualitatively different.

The significant difference in Pjjc and Pjjx
indicates that the side chain of a residue has
different effects on polypeptide conformations
when it occurs in position one or two of the
pair. This has also been shown from confor-
mational energy calculations on tripeptides
(20), indicating that this observed asymmetry
in potential values is not simply due to the
statistics applied. This information is com-
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Conformation of pairs of amino acids

TABLE 3
Single residue potentials obtained using the crystal structure data of proteins mentioned
in the text

Amino acid Helix Extended Chain Coil
residue structure reversals region
Ala 1.46 0.80 0.81 0.93
Cys 0.75 1.31 1.10 0.83
Asp 0.98 0.91 1.28 0.82
Glu 1.47 0.74 0.96 0.83
Phe 1.20 1.21 0.75 0.84
Gly 0.62 0.88 1.28 1.22
His 1.26 0.77 1.11 0.86
Ile 1.08 1.43 0.66 0.82
Lys 1.15 0.71 0.98 1.16
Leu 1.24 1.06 0.84 0.86
Met 1.50 0.97 0.74 0.79
Asn 0.78 0.77 1.30 1.14
Pro 0.58 0.80 1.25 1.36
Gin 1.16 0.92 1.08 0.84
Arxg 0.99 1.04 1.04 0.93
Ser 0.74 0.97 1.30 0.98
Thr 0.75 1.08 0.97 1.21
Val 1.03 1.47 0.53 0.98
Trp 0.81 1.24 0.72 1.23
Tyr 0.74 1.28 1.03 0.95

Three letter amino acid code has been used.

TABLE 4
Puairs of amino acid residues whose Py, and Py, values differ significantly in all four states (see Text)

Ala-Pro, Pro-Ala; Ala-Val, Val-Ala; Asp-Ser, Ser-Asp
Asp-Thr, Thr-Asp; Glu-Lys, Lys-Glu; Glu-Leu, Leu-Glu
Glu-Val, Val-Glu; Phe-Leu, Leu-Phe; Lys-Ser, Ser-Lys
Leu-Asn, Asn-Leu; Leu-Thr, Thr-Leu; Asn-Val, Val-Asn

Three letter amino acid code has been used.

pletely lost when one is working at the single Helix: Ile-Gln; Ile-Val; Lys-lle; Leu-Gln;

amino acid residue level. . . . .
Further, looking at the values of potentials Gln-Gln; Val-Glu; Val-Phe; Val-Ile; Tle-Val.

in both Table 2 and Table 3 it would appear Extended structure: Ile-Ile; Leu-Leu; Leu-Arg;
that the pairs formed by amino acid residues

which individually have a higher potential to Leu-Thr; Val-Leu.

exist in a particular secondary structure, also . . T . .
have greatppotential to exiZt in the same Chatn reversals: Cys-Gly; His-Gly; Asn-Gln;
secondary structure as their constituents, This Gln-Ser; Tyr-Asp; Tyr-Ser.

is not always true and the following pairs are )

such examples in the four secondary structural Coil: Lys-Gly; Lys-Lys; Lys-Pro; Asn-Thr;
states considered. Thr-Pro.
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Tables 2 and 3 also illustrate that even
though the constituent amino acid residues
have less potential for a particular secondary
structural state, the pair formed from the
residues may have a great potential in that
secondary structural state, as shown by the
examples given below.

Helix: Asp-Asp; Asp-Pro, Arg-Ser; Ser-Asp.

Extended structure: Ala-Pro; Gly-Gly; Gly-Pro;
Lys-Pro; Gln-Ser; Ser-Gly.

Chain reversals: Ala-lle; Glu-Glu; Glu-Leu;
Lys-Ala; Lys-Lys; Leu-Leu; Thr-Lys.

Coil: Ala-His; Ala-GIn; Asp-Phe; Glu-Phe;
lie-Glu; Leu-Gln; GIn-Ser; Ser-Phe;
Ser-Leu; Ser-Ser; Ser-Tyr; Val-Asp;
Val-Phe; Val-His; Tyr-Ser.

The above discussion suggests that the
pairs of amino acids have different confor-
mational properties from their constituent
single amino acid residues. However, it does
not clearly indicate whether one can recon-
stitute the pair potentials from single residue
potentials. The single amino acid residue poten-
tial given in Table 3 for all four states have been
used to determine the potentials for pairs of
amino acids both by addition and multiplication
of these individual potential values. These cal-
culated potential values were compared with
the observed potentials for pairs of amino acids
given in Table 2. The comparison shows that
the association effect between residues in the
pair, which is included in the values of Table 2,
is considerable and varies not only with the
type of amino acids and the position they take
in the pair but also with the secondary structure.
In other words, comparing the ratio of poten-
tials calculated for the pair of amino acids with
the observed value in all four secondary struc-
tural states, the two vary considerably, indi-
cating that short-range interactions are not
incorporated in single residue potentials used in
protein folding studies. This can be further seen
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by assuming that the observed potential for a
given pair depends on (i) the types of amino
acids, (ii) the secondary structure in which it is
occurring, and (iii) the position of the residue
in the pair, thus obtaining

Pie = (SSik - Xi)) (SSix - X;,) 4)

Xy and X;, are single amino acid potentials
when it type of residue is in position one and
it type of residue in position two. Note that
Xy and X;, not only represent the type of
amino acid but also the position of amino acid
in the pair. Thus for a residue i, X;; and X;,
are assumed to be different. 8S;; and SS;,
are secondary structural contributions to the
association effect.

If the above assumptions are valid, and if
the observed potentials of pairs can be par-
titioned into potentials of single amino acids,
as is done in eqn. 4, then, using Table 2, for a
given secondary structure

Pasa _ Pac _ Pap  _ Pay

Pca  Pocc  Pop Poy
The ratio will also be equal to

Parn _ Pca _ Poa . _ Pyva

Pac Pec Ppc Pyc

where Py 5 etc. are Py values for a particular
secondary structure. However, these ratios
differ considerably even considering statistical
fluctuations.

It is clear from the results and discussion
above that single amino acid potentials, though
statistically more reliable, will not account for
the interactions between two neighbouring side
chains. These interactions vary depending upon
the postion of amino acid residue. They are also
a function of the secondary structure in which
these residues are present. Probably the single
most important result of our studies, which
may have appeared obvious at the outset, is
that the pairs of amino acids cannot be regarded
as a linear combination of constituent amino
acids. Even at the secondary structural level
the conformational properties of pairs of amino
acids differ from the conformational properties
of constituent amino acids. Secondary structure



prediction algorithms must, therefore, incor-
porate this aspect if better results are to be
expected.

10.

11.

REFERENCES

Levitt, M. (1978) Biochemistry 17,4277—-4285
Argos, P. & Palau, J. (1982) Int. J. Peptide

Protein Res. 19,380-393

Chou, P.Y. & Fasman, G.D. (1978) in Adv.
Enzymol. 47,45—148

Garnier, J., Osguthorpe, D.J. & Robson, B.
(1978) J. Mol. Biol. 120,97-120

Busetta, B. & Hospital, M. (1982) Biochim.
Biophys. Acta 701,111-118

Palau, J., Argos, P. & Puigdomenech, P. (1982)
Int. J. Peptide Protein Res. 19,394—401

Lim, V.I. (1974) J. Mol. Biol. 88, 873—-894
Ptitsyn, O.B. & Finkelstein, A.V. (1970) Bio-
physika 15,785-796

Bunting, J.R., Athey, T.W. & Cathou, R.E.
(1972) Biochim. Biophys. Acta 285,60-70

Wu, T.T. & Kabat, E.A. (1971) Proc. Natl. Acad.
Sci. US 68,1501-1506

Bourgeios, S., Jernigan, R.L., Szu, S.C., Kabat,
E.A. & Wu, T.T. (1979) Biopolymers 18,2625~
2643

12.
13.

14.

15.

16.

17.

18.

19.

20.

Conformation of pairs of amino acids

Rose, G.D. (1978) Nature 272, 586590
Kolaskar, A.S. & Ramabrahmam, V. (1982)
Int. J. Peptide Protein Res. 19, 1-9

Krigbaum, W.R. & Rubin, H.B. (1971) Biochim.
Biophys. Acta 229, 368383

Krigbaum, W.R. & Komoriya, A. (1979) Bio-
chim. Biophys. Acta 576,204

Meirovitch, H., Rackovsky, S. & Scheraga, H.A.
(1980) Macromolecules 13, 13981405

Wu, T.T., Szu, S.C., Jernigan, R.L., Bilofsky,
H. & Kabat, E.A. (1978) Biopolymers 17, 555~
572

Kolaskar, A.S., Ramabrahmam, V. & Soman,
K.V. (1980) Int. J. Peptide Protein Res. 16,
1-11

Feldman, R. (1976) Atlas of Macromolecular
Structure on Microfiche, 1st edn. Tracer Jitco
Inc., Rockville, MD

Brown III, F.R., Hopfinger, A.J. & Blout, E.R.
(1972) J. Mol. Biol. 63,101-115

Address:

Dr. A.S. Kolaskar

Center for Cellular and Molecular Biology
RRL Campus, Taranaka

Hyderabad 500-009

India

91



