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(¢, ¥) data from crystal structures of 221 proteins having high resolution and sequence similarity cut-off at
the 25%, level were analysed by dividing the Ramachandran plot in three regions representing three confor-
mational states: (i) conformational state 1: conformations in the (¢, ) range from (-140°, —100°) to (0°,
0°); (ii) conformational state 2: conformations with (¢, ¥) from (-180°, 80°) to (0 °, 180 °); and (iii) con-
formational state 3: all the remaining conformations in the (¢, ) plane which are not included in the above
two conformational states.

Normalized probability values of the occurrence of single amino acid residues in conformational regions
1-3 and similar values for dipeptides were calculated. Comparisons of single residue and dipeptide normalized
probability values have shown that short-range interactions, although strong, destabilize conformational states
of only 44 dipeptides out of the 400 x 9 possible states. However, dipeptide frequency values provide better
resolving power than single-residue potentials when used to predict conformational states of residues in a
protein from its primary structure. The simple approach used in the present study to predict conformational
states yields an accuracy of >70% for 14 proteins and an accuracy in the range of 50-70%, for 247 pro-
teins. Thus these studies point out yet another use of the Ramachandran plot and the role of tertiary inter-
actions in protein folding. © Munksgaard 1996.
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Several attempts have been made in the last few years
to predict the three-dimensional structures of proteins
which include the use of neural nets, expert systems as
well as homology modelling, energy minimization and
statistical methods (1-8). Such approaches have given
an insight into the problem of protein folding and have
aided the implementation of experiments which give
information regarding not only the final folded struc-
tures but also the intermediates. An impetus for these
studies comes mainly from the fact that today one can
synthesize a polypeptide of any sequence and length in
the laboratory using genetic engineering techniques.
However, very few of such synthesized polypeptides
become folded and take on a stable three-dimensional
structure, thus making the problem of protein folding
one of the most challenging problems (9). In recent
years, high resolution structural data of globular pro-
teins obtained by using single crystal X-ray diffraction
studies have helped protein modellers to gain an insight
into the problem of protein folding. The Protein Data
Bank {(PDB) contains information regarding three-
dimensional structures of nearly 1500 proteins (10).
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Analysis of such large numbers of data helps in formu-
lating rules which can be used in protein folding stud-
ies. The (¢, ¥) data of proteins have been proved to be
useful in developing protein folding algorithms (11-13).
In the present study, an attempt has been made to
analyze the (¢, ) data in order to develop a knowledge
base which can be used in prediction of protein struc-
ture.

The main chain conformations, the (¢, ) angle val-
ues of amino acid residues in a polypeptide, are the
result of the properties of amino acid residues, near-
neighbour interactions and tertiary interactions. How-
ever, if the (¢, ) data are chosen from a sufficiently
large sample of proteins, which are unrelated both in
terms of structure and sequence, then the effect due to
tertiary interactions and near neighbours will be masked
to a very large extent, and the (¢, ) distribution of each
amino acid residue will reflect its conformational prop-
erty. Similarly, distribution of (¢, ) and (¢i+ 1, Yis 1)
of dipeptides will reflect short-range interactions be-
tween constituent amino acid residues of the pair in
addition to the effect due to the individual amino acid
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residues. Therefore, analysis of frequencies of occur-

rence of single amino acid residues and dipeptides in

the various regions of the Ramachandran plot has been

carried out on a carefully chosen set of proteins. In the

earlier studies (14) the Ramachandran plot has been

divided into three parts (Fig. 1). These are

(i) region 1. primarily consisting of the closely (or
tightly) packed conformations with ¢ ranging from
—140° to 0° and i ranging from —100° to 0 °;

(i) region II: containing mainly the extended confor-
mations with ¢ ranging from —180° to 0° and y
ranging from 80 ° to 180 °; and

(iii)region III: all the remaining conformations which
are not included in regions I and II.

Such a broad division of the (¢, ¥) plane, although
reducing the resolution, allows one to calculate statis-
tically relevant potential or normalized frequency val-
ues for each amino acid residue as well as dipeptides.

Such potentials have been used in the present study
to develop a simple algorithm which enables assign-
ment of conformational state to each amino acid resi-
due in a given primary structure of a protein.

MATERIAL AND METHODS

Choice of data

A set of 221 proteins was selected from the PDB, using
the algorithm of Hobohm et al. (15), with 259, sequence
similarity cutoff. In other words, the best resolved struc-
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FIGURE 1

Ramachandran plot showing three conformational regions [, 1T and
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tures with little sequence similarity among proteins were
chosen. For those proteins which had breaks in the
chain (due to missing amino acid residues), fragments
(with length greater than 40) were treated as separate
entries. Thus the chosen data set has 244 entries con-
taining 51998 amino acid residues.

Calculations of potentials
(¢, W) values were calculated for all the amino-acid
residues in each protein in the set. Conformational state
1, 2 or 3 corresponding to regions I, Il or III of the
Ramachandran plot, respectively, was assigned to each
amino-acid residue on the basis of its (¢, ) value. In
the same fashion, conformational states 1-1, 1-2, 1--3,
2-1,2-2,2-3,3-1, 3-2 and 3-3 were assigned to every
overlapping dipeptide. Frequencies of single residues in
three states were calculated and normalized using the
following simple formula:
g N
Pyp=—"" (D
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where ny is the number of times the amino acid residue
of type i occurs in state k = 1-3; N is the total number
of residues, and Py is the potential value of amino acid
of type 7 in state k.

Potential values Py for dipeptides made up of amino
acid residues of the types i and j, in state k& (where k
varies through nine states 1-1 to 3-3) were calculated
in a similar fashion by using the relation:
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where n is the number of occurrences of the dipeptide
in the conformational state k = 1-1to 3-3, and NV is the
total number of dipeptides in the data set.

Py and Py values were divided into five class inter-
vals in order to minimize the errors in the analysis, and
weight values Wy or Wi were assigned for each of the
classes which were used in the prediction algorithm
(Table 1). W values are not given but are available on
request.

Algorithm for assigning conformational states to
amino-acid residues in a given polypeptide
A given protein sequence was divided into successive
overlapping heptapeptides. The heptapeptides were
treated as independent units to fix the conformational
state of the central amino acid residue. This was done
by computing the interactions among the amino acid
residues in a heptapeptide consisting of residues num-
bered (/- 3) to (/+ 3). The following pairwise interac-
tions were considered:

(a) interactions of the central amino acid residue
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TABLE 1

Ranges of potential values and respective assigned weights

TABLE 2
Values of the constants An, By, and Cy, used in eqn. (3)

Range of potential values, Weight assigned,

P, or P,-,-/\ VV:‘A’ or M/l_‘jk
0.00-0.50 0
0.51-0.75 1
0.76-1.25 2
1.26-2.00 3
2.01 and higher 4

with all other residues of the heptapeptide; i.e. (/, /- 3),
(L1=-2), (LI=-1), (, 1+1),{,1+2)and (/, [+ 3);

(b) interactions between the (near-neighbour) resi-
dues of dipeptides, (/- 3,/-2),(I-2,[-1),({+ 1,1+ 2)
and (I+2, 1+ 3);

(c) interactions between residues other than near
neighbours, i.e. interactions of the type (/ - 3, /-1), ({ - 1,
[+ 1), and (/+ 1, I+ 3).

For cach heptapeptide, all the possible conforma-
tions were enlisted. The total weight value W, was com-
puted for each conformation ‘¢’ of a heptapeptide by
calculating various interactions between pairs of amino
acid residues as given in eqn. (3).

I+ 2
WC = Z AH! (I/V[/'k)m,m + 1 +

nw=1-3

I+ 3
Bm (VVik)m + (VV:A)/z +

m=l=-3.m#l - 1,I+1

i+ 3
Cm { [ ( VV:‘k)m

mo=10—-3,m#El -2 01 +2,/4+3

+ (I/Vik)m + 2]/2,: (3)
where A,, are the scaling factors for the dipeptide in-
teractions of the type (m.m + 1) where m is in the range
({- 3, I+ 2); By are the scaling factors for interactions
of the central amino acid residue with the residue m,
where m assumes the values /-3, /-2, /+2 and [+ 3;
C,. are the scaling factors for dipeptide interactions of
the type (m,m + 2), where m assumes the values /-3,
[—1and /+ 1; (Wi Jiman -1 1s the weight of the dipeptide
made of residues i and j in state k, at positions # and
m + 1 in the heptapeptide where m varies from /—3 to
1+ 2; (Owig ) is the weight of amino acid 7 in state k
occurring at position m in the heptapeptide (/- 3,7+ 3);
and (wy ) is the weight of amino acid i in state k& where
{is the central residue of heptapeptide (/- 3, /+ 3).
The interaction terms would be directly proportional
to weight values, and thus the proportionality constants
(4, By and C,;) for each pairwise interaction term
were calculated to give a maximum W, for experimen-
tally observed conformational states of the heptapep-
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Value of constant for
conformation of type

Symbol of constant

1 11
Az, Aren 0.50 0.25
Aioa 0.50 0.50
Ao, Ay 1.00 1.00
Ao 0.50 0.125
B3 0.25 0.25
B> 0.50 0.50
Bi.i» 0.25 0.25
Biis 0.25 0.125
Cios 0.25 0.25
Cioa 0.50 6.50
Crin 0.25 0.125

Type I conformations of heptapeptides are those in which all seven
residues are in the same conformational state (cither 1 or 2 or 3} and
twpe 11 conformations are those in which the states of all seven
residues are not identical.

tide. The scaling factors 4,,, B,, and C,, in the equa-
tion were assigned by trial and error. The values of
these constants depend on the position of the amino-
acid residue in the heptapeptide, but are independent of
the type of amino acid residue. On the other hand, Wi
values are dependent on the type of residue and its
conformational state. The values of the scaling factors
are listed in Table 2.

Using the steps depicted in the flowchart in Fig. 2,
conformational state was assigned to the central resi-
due of a heptapeptide (/- 3, I+ 3). In this fashion, the
conformational state of each amino acid residue in a
given protein, except three residues each from the
N-terminal and C-terminal ends was fixed.

RESULTS AND DISCUSSION

Analysis of the dipeptide potentials

The Py values given in Table 3 indicate that the resolv-
ing power of these values is very low. It can be seen
from this table that Gly, Asp and Asn are the only
residues which have a high potential value in confor-
mational state 3. The preference by Asp and Asn for
state 3, and particularly for conformations with positive
values of the dihedral angle ¢, has been pointed out in
earlier studies (16, 17). Amino acid residues such as
Val, Ile, Pro, Cys, Thr and Tyr prefer state 2, while Ala,
Glu and Gln prefer state 1. This indicates that although
the division of the (¢, ¥) plane into three states is ex-
pected to give results similar to secondary structural
preferences by the amino-acids, our results do not give
expected preferences in all cases. This is mainly be-
cause the long-range and medium-range interactions
which are responsible for formation of secondary struc-
tures are masked in our studies.



1. Break protein sequence into )
successive overlapping heptapeptides
from N-terminal to C-terminal

l

2. Derive all the possible
conformations of a heptapeptide

5

3. For a given heptapeptide conformation,
pick up appropriate single or
dipeptide weights W or wﬁk

a

4, Using proper scaling factors, Am , Bm
and Cy, compute various dipeptide
interaction terms

J

5. Compute the total weight value We
using equation 3

[

6. Pick up the heptapeptide conformation
which has the highest W,

L

7. Assign coreesponding conformational
state to the central ( Lth) residue

J

8. Repeat operations numbered 2 to 7 for
all subsequent heptapeptides in
order to assign conformational states
to the residues of the protein

FIGURE 2

Flowchart for the assignment of conformational states based on
short-range interactions.

The Py values (not given) have a better spread over
a range of 0.00-10.53 and provide an insight into the
interactions between near neighbour residues and con-
formational properties of dipeptides; although some of
the Py values may have large error owing to a smaller
number of observations in the state. Analysis of Py
values and corresponding single-residue potentials Pi
indicates that interactions do exist between amino-acid
residues of type i and ; in most cases; however, they do
not destabilize the conformations preferred by the in-
dividual residues. Exceptions to this were observed
which are given in Table 4. As can be seen from this
table, even though individual residues / and j of the
dipeptides have high Py and Pj values, the Py, value is
low.

Out of the total 44 dipeptides listed in the table, 36
dipeptides have the conformational state of either 1-2
or 2-1; and only 8 dipeptides are in conformational
states 1-3, 2-3, 3—1 or 3-2. There are no dipeptides
which are in states -1 or 2—-2 or 3-3. These observa-
tions can be explained by the rationale that the confor-
mational states 1 and 2 represent, respectively, closely
packed structures such as «-helices, and extended struc-
tures like f-sheets; while state 3 represents coils and
chain reversals. Hence, conformational states 1-1, 2-2
and 3-3 are well stabilized; whereas conformational

Prediction of conformational states

TABLE 3

Values of potentials of single amino acid residues in three conformational
states

Serial Amino Number of Values of potentials

number acid amino acids Py in states (k)
i in the data set
1 2 3

1 Gly 4190 0.46 0.37 4.08

2 Ala 4371 1.32 0.81 0.62

3 Val 3556 0.86 1.43 0.29
4 Leu 4293 1.17 1.03 0.45

5 Ile 2785 0.98 1.31 0.27

6 Pro 2470 0.86 1.36 045

7 Met 1077 1.20 0.94 0.61

8 Cys 862 0.79 1.34 0.70

9 Ser 3229 0.97 1.09 0.85
10 Thr 3161 0.87 1.25 0.71
11 Asp 3109 0.99 0.85 1.42
12 Glu 3180 1.35 0.77 0.61
13 Arg 2313 1.19 0.93 0.66
14 Lys 3084 1.17 0.92 0.75
15 Asn 2409 0.79 0.86 1.93
16 Gin 1876 1.21 0.88 0.73
17 Phe 2136 0.92 1.18 0.73
18 Tyr 1940 0.87 1.25 0.72
19 His 1181 0.92 1.01 1.19
20 Trp 776 1.09 1.07 0.58

Note high values for P, 3, P11 3, P15,y and low vlues for Py, P33, Pas,
P5_3 and P(,_].

states like 1-2 or 2—-1 may become unfavourable and
also may cause a sudden break in a contiguous stretch
of a regular conformation.

Further analysis of the Py values revealed that only
two dipeptides, Met-Trp and Trp-Met, have high Py
even though individual residues 7 and j have low Py
values. Py; of Met-Trp and Trp-Met in state 3-3 are
2.01 and 4.75, respectively, although the potential val-
ues of Py value of the residue Met and Trp in state 3
are 0.61 and 0.58, respectively. It may be noted that the
occurrences of these individual residues and the di-
peptides in state 3 and 3-3 are very low. They are
Met — 104, Trp — 71, Met-Trp — | and Trp-Met — 3.
Therefore, the percentage error in observed Py and P
values will be large.

Assignment of conformational states

The values of the scaling factors A,,, B, and C,, have
been obtained to get the prediction accuracy as high as
possible. However, predicted results should not be too
sensitive to the values of these factors. In other words,
the robustness of the scaling factors has been consid-
ered as one of the criteria. It may be mentioned that
scaling factor values were determined using a small
subset of the original data set, consisting of only 15
proteins which belong to different structural classes.
The refinement of the scaling factors was then carried
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TABLE 4

List of dipeptides and their conformational states in which they have low
potential values even though constituent single residues have high poten-
tial values in the states concerned

Dipeptide Potential State Single residue
(&) of (i-j) of (i—j) potentials
Res. i Res. j
A-1 0.47 1-2 1.32 1.31
A-P 0.00 1-2 1.32 1.36
V-M 0.39 2-1 1.43 1.20
V-R 0.46 2-1 1.43 1.19
L-P 0.00 1-2 1.17 1.36
L-W 0.47 1-2 1.17 1.07
I-M 0.00 2-1 1.31 1.20
I-w 0.00 2-1 1.31 1.09
P-W 0.33 2-1 1.36 1.09
M-V 0.24 -2 1.20 1.43
M-I 0.40 1-2 1.20 1.31
M-P 0.00 1-2 1.20 1.36
C-D 0.36 2-3 1.34 1.42
S-P 0.31 1-2 0.97 1.36
S-w 0.00 1-2 0.97 1.07
T-H 0.46 2-3 1.25 1.19
D-W 0.48 3-2 1.42 1.07
E-P 0.00 1-2 1.35 1.36
R-P 0.00 1-2 1.19 1.36
R-C 0.00 1-2 1.19 1.34
R-W 0.00 1-2 1.19 1.07
K-P 0.00 1-2 1.17 1.36
Q-P 0.25 1-2 1.21 1.36
F-A 0.34 2-1 1.18 1.32
F-L 0.34 2-1 1.18 1.17
F-M 0.00 2-1 1.18 1.20
F-E 0.34 2-1 1.18 1.35
F-R 0.46 2-1 1.18 1.19
F-Q 0.19 2-1 1.18 1.21
F-W 0.00 2-1 1.18 1.09
Y-M 0.49 2-1 1.25 1.20
Y-K 0.45 2-1 1.25 1.17
Y-Q 0.44 2-1 1.25 1.21
Y-H 0.41 2-3 1.25 1.19
H-S 0.47 3-1 1.19 0.97
H-K 0.44 3-1 1.19 1.17
H-F 0.00 3-2 1.19 1.18
w-V 0.40 1-2 1.09 1.43
W-P 0.00 1-2 1.09 1.36
W-M 0.00 2-1 1.07 1.20
W-5 0.00 1-2 1.09 1.09
W-R 0.45 2-1 1.07 1.19
W-N 0.47 1-3 1.09 1.93
wW-Q 0.45 2-1 1.07 1.21

out on the whole set of 221 proteins (used for calcula-
tion of Py values). Refined constants were used in the
program to predict the conformational states of each
amino acid in 221 protein entries as well as additional
100 proteins. These 100 proteins were selected using
the same criteria as discussed in the method. The re-
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sults show that one could predict conformational states
of amino acids of 14 proteins with an accuracy of 70%,
or more (Table 5). Such a high accuracy of predicted
results by a method which uses only short-range and
medium-range interactions but no long-range or tertiary
interactions indicates that the observed three-
dimensional structures of these 14 proteins may be hav-
ing an insignificant effect on tertiary interactions.

On the other hand, for 247 proteins, which form the
bulk of the data set, the prediction accuracy has been
observed in the range 51-709, (Table 6). The least pre-
diction accuracy was observed for 5 proteins falling in
the range 30-409,. One may therefore conclude that
in these proteins tertiary interactions are not only im-
portant but critical in deciding the three-dimensional
structure. Thus these results re-emphasize that tertiary
interactions must be incorporated in prediction algo-
rithms in order to achieve improved accuracy of pre-
diction.

Recent studies have shown considerable improve-
ment in «-helix and extended structure predictions (18,
19). The high accuracy of such methods, although com-
mendable, does not allow one to predict (¢, ¥) values
for every residue in the protein. Although prediction
accuracy of the method discussed here seems lower
than the secondary structure prediction algorithms,

TABLE 5

List of proteins for which the accuracy of prediction is >70%

Name of the protein with PDB code Accuracy
biological source obtained (%)

Apolipoprotein E4 (LDL binding 1LE4 75
domain) (human)
Bilin Binding Protein (chain A) 1BBPA 73
(cabbage butterfly)
Cytochrome C (chain A) 2CCYA 72
(Rhodospirillum molischianum)
Des-(ile 318-arg 417)-tyrosyl- 4TS1A 71
transfer RNA synthetase (chain A)
(Bacillus stearothermophilus)
Engrailed homeodomain complex IHDDC 90
with DNA (chain C) (fruit fly)
Ferritin (chain H) (human) IFHAH 74
Guanylate kinase 1GKY 71
(Saccharomyces cerevisiae)
High-potential iron—sulfur protein 11SU 71
(phototrophic bacteria)
Immunoglobulin FAB fragment IMFBH 71
(mouse)
MHC class I H-2K (chain B) 1IVAAB 72
(mouse)
Myoglobin (sperm whale) IFCS 74
Subtilisin Carlsberg inhibitor 1CSEIL 71
Triosephosphate isomerase (chain A) 1TREA 71
(E. coli)
Tryptophan synthase (chain A 1WSYA 73

fragment) (salmonella typhimurium)




TABLE 6

Prediction results in the various ranges of accuracy

Range of accurcy Number of proteins in

%) the range
41-50 71
51-60 197
61-70 50
71-80 12
81-90 2

such a comparison has little meaning. In secondary-
structure prediction algorithms one is predicting the
conformations of a small percentage of residues of a
protein. Even in strong «-proteins such as myoglobin,
only 679, of residues are in an «-helical conformation,
and thus even if the prediction accuracy is 100%, for
such proteins, conformations of only 677 residues are
actually predicted. Secondly, prediction of conforma-
tions by making use of long-range interactions can force
the molecule to fold in one of the local minimum con-
formations, far away from the native conformation.
Thus, comparison of the predicted conformational
states in the Ramachandran plot with secondary struc-
ture predictions may not be valid but one may qualita-
tively compare the results given here with secondary-
structure data. This is mainly due to the fact that
conformational state 1 includes «-helices while confor-
mational state 2 includes f-sheets. It must be men-
tioned that states 1 and 2 also include bends as well as
many other conformations belonging to the coiled state.
The contiguous stretch of residues in conformational
states 1 and 2 may more often represent a-helices and
[-sheets, respectively. Under this assumption and using
the criteria by Rost et al. (20), the comparison carried
out of amino-acid residues in «-helices and ff-sheets
from X-ray diffraction data (PDB data) and present
results showed an agreement in the range 45-559;.

CONCLUSIONS

The approach of predicting conformational states is an
alternative to the prediction of secondary structures
and seems more beneficial in building tertiary struc-
tures, as it completely excludes the consideration of
long-range interactions and does not assume that dur-
ing protein folding, regular structures are formed first,
which then interact with each other to form the final
three-dimensional structure. The de novo synthesis ex-
periments on the computer by Rawn and Feldman (per-
sonal communication) support our approach that dur-
ing folding, few regular structures may get unfolded,
and many of the irregular structures may form «-helices
or f-sheets due to tertiary interactions. The approach
described here can be refined to obtain better results by
incorporating available knowledge based on protein

Prediction of conformational states

three-dimensional structure. This has been avoided in
order to point out the effect of only short-range inter-
actions in protein folding studies.

Secondly, in the secondary-structure prediction ap-
proach, one cannot build the three-dimensional struc-
ture of the molecule, as the relative orientation of the
secondary structural elements as well as conformations
of the coiled part cannot be assigned. On the other
hand, in the present approach, one can assign (¢, ¥)
values (-60°, —60°), (-140°, 140 °) and (60 °, 80 °)
for residues in conformational states 1, 2 and 3, respec-
tively. Protein molecules built using these (¢, ¥) values
and predicted conformational states were found to be
more open and loosely structured than the native mol-
ecules. The conformation of the protein thus assigned
may act as a good starting point in an energy-
minimization approach to achieve native conformation
having a minimum free energy. Studies in this direction
are in progress.
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